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For some applications, especially those that are safety-critical or security-
critical, it  is essential that  the program be correct, and that correctness be 
established rigorously through some formal procedure. For the most  severe 
safety-critical applications the consequence of an error can be loss of life or 
damage to the environment. Similarly, for the most severe security-critical 
applications the consequence of an error may be equally catastrophic such as 
loss of national security, commercial reputation or just plain theft. 

Applications are graded into different  levels according to the risk. For 
avionics applications the DO-178B standard [1] defines the following
level E none: no problem; e.g. entertainment system fails? – could be a benefit!
level D minor: some inconvenience; e.g. automatic lavatory system fails.
level C major: some injuries; e.g. bumpy landing, cuts and bruises.
level B hazardous: some dead; e.g. nasty landing with fire.
level A catastrophic: aircraft crashes, all dead; e.g. control system fails.
As an aside, note that although a failure of the entertainment system in general 
is level E, if the failure is such that  the pilot is unable to switch it  off (perhaps in 
order to announce something unpleasant) then that failure is at level D.

For the most demanding applications, which require certification by an 
appropriate authority, it is not enough for a program to be correct. The program 
also has to be shown to be correct and that is much more difficult.

This chapter gives a very brief introduction to SPARK. This is a language 
based on a subset  of Ada which was specifically designed for the writing of high 
integrity systems. Although technically just  a subset  of Ada with additional 
information provided through Ada comments, it  is helpful to consider SPARK as 
a language in its own right  which, for convenience, uses a standard Ada 
compiler, but which is amenable to a more formal treatment than the full Ada 
language. Analysis of a SPARK program is carried out by a suite of tools of 
which the most important are the Examiner, Simplifier, and Proof Checker.

We start by considering the important concept of correctness and contracts.

Contracts

What  do we mean by correct software? Perhaps a general definition is: software 
that does what  the user had in mind. And "had in mind" might literally mean just 
that for a simple one-off program written to do an ad-hoc calculation; for a large 
avionics application, it  might  mean the text  of some written contract between 
the ultimate client and the software developer.

This idea of a software contract  is not new. If we look at the programming 
libraries developed in the early 1960s, particularly in mathematical areas and 



104

perhaps written in Algol 60 (a language favored for the publication of such 
material in respected journals such as the Communications of the ACM and the 
Computer Journal), we find that  the manuals tell us what parameters are 
required, what constraints apply on their range and so on. In essence there is a 
contract between the writer of the subroutine and the user. The user promises to 
hand over suitable parameters and the subroutine promises to produce the 
correct answer.

The decomposition of a program into various component parts is very 
familiar and the essence of the programming process is to define what these 
parts do and therefore what  the interfaces are between them. This enables the 
parts to be developed independently of each other. If we write each part 
correctly (so that it  satisfies its side of the contract  implied by its interface) and 
if we have defined the interfaces correctly, then we are assured that when we put 
the parts together to create the complete system, it will work correctly.

Bitter experience shows that  life is not quite like that. Two things go wrong: 
on the one hand the interface definitions are not usually complete (there are 
holes in the contracts) and on the other hand, the individual components are not 
correct or are used incorrectly (the contracts are violated). And of course the 
contracts might not say what we meant to say anyway.

Correctness by construction

SPARK encourages the development of programs in an orderly manner with the 
aim that  the program should be correct  by virtue of the techniques used in its 
construction. This "correctness by construction" approach is in marked contrast 
to other approaches that  aim to generate as much code as quickly as possible in 
order to have something to demonstrate.

There is strong evidence from a number of years of use of SPARK in 
application areas such as avionics, banking, and railway signaling that indeed, 
not only is the program more likely to be correct, but  the overall cost of 
development  is actually less in total after all the testing and integration phases 
are taken into account.

We will now look in a little more detail at  the two problem areas introduced 
above, first  giving complete interface definitions, and secondly ensuring that  the 
code correctly implements the interface.

Ideally, the definition of the interfaces between the software components 
should hide all irrelevant  detail but expose all relevant  detail. Alternatively we 
might say that an interface definition should be both complete and correct. 

As a simple example of an interface definition consider the interface to a 
subprogram. As just mentioned, the interface should describe the full contract 
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between the user and the implementer. The details of how the subprogram is 
implemented should not concern us. In order that these two concerns be clearly 
distinguished it is helpful to use a programming language in which they are 
lexically distinct. Some languages present  subprograms (functions or methods) 
as one lump, with the interface physically bound to the implementation. This is 
a nuisance: not only does it  make checking the interface less straightforward 
since the compiler wants the whole code, but it also encourages the developer to 
hack the code at  the same time as writing the interface and this confuses the 
logic of the development process. 

Ada has a structure separating interface (the specification) from the 
implementation (the body). This applies both to individual subprograms and to 
groups of entities encapsulated into packages and this is a key reason why Ada 
forms such a good base for SPARK. 

SPARK requires additional information to be provided and this is done through 
the mechanism of annotations which conveniently take the form of Ada 
comments. A key purpose of these annotations is to increase the amount of 
information about  the interface without  providing unnecessary information 
about the implementation. In fact  SPARK allows the information to be added at 
various levels of detail as appropriate to the needs of the application.

Consider the information given by the following Ada specification
procedure Add(X: in Integer);

Frankly, it tells us very little. It  just  says that  there is a procedure called Add and 
that it  takes a single parameter of type Integer whose formal name is X. This is 
enough to enable the compiler to generate code to call the procedure. But it says 
nothing about  what  the procedure does. It  might do anything at  all. It certainly 
doesn't  have to add anything nor does it have to use the value of X. It could for 
example subtract  two unrelated global variables and print  the result to some file. 
But  now consider what happens when we add the lowest  level of annotation. 
The specification might become

procedure Add(X: in Integer);
--# global in out Total;

This states that the only global variable that the procedure can access is that 
called Total. Moreover the mode information tells us that  the initial value of 
Total  must  be used (in) and that a new value will be produced (out). The SPARK 
rules also say more about the parameter X. Although in Ada a parameter need 
not be used at all, nevertheless an in parameter must be used in SPARK.

So now we know rather a lot. We know that a call of Add will produce a new 
value of Total  and that  it  will use the initial value of Total  and the value of X. We 
also know that  Add cannot  affect  anything else. It certainly cannot print 
anything or have any other unspecified side effect.
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Of course, the information regarding the interface is not complete since 
nowhere does it  require that  addition be performed in order to obtain the new 
value of Total. In order to do this we can add optional annotations which 
concern proof and obtain

procedure Add(X: in Integer);
--# global in out Total;
--# post Total = Total~ + X;

The annotation commencing post is called a postcondition and explicitly says 
that the final value of Total  is the result  of adding its initial value (distinguished 
by ~) to that of X. So now the specification is complete.

It  is also possible to provide preconditions. Thus we might require X to be 
positive and we could express this by 

--# pre X > 0;

An important  aspect of the annotations is that  they are all checked statically by 
the SPARK Examiner and other tools and not when the program executes. 

It  is especially important to note that  the pre- and postconditions are checked 
before the program executes. If they were only checked when the program 
executes then it would be a bit like bolting the door after the horse has bolted 
(which reveals a nasty pun caused by overloading in English!). We don't  really 
want to be told that the conditions are violated as the program runs. For 
example, we might have a precondition for landing an aircraft

procedure Touchdown( ... );
--# pre Undercarriage_Down;

It  is pretty unhelpful to be told that  the undercarriage is not  down as the plane 
lands; we really want to be assured that the program has been analysed to show 
that the situation will not arise.

This thought  leads into the other problem with programming – ensuring that 
the implementation correctly implements the interface contract. This is often 
called debugging. Generally there are four ways in which bugs are found
(1) By the compiler. These are usually easy to fix because the compiler tells 

us exactly what is wrong.
(2) At runtime by a language check. This applies in languages which carry 

out checks that, for example, ensure that  we do not  write outside an 
array. Typically we obtain an error message saying what structure was 
violated and whereabouts in the program this happened.

(3) By testing. This means running various examples and poring over the 
(un)expected results and wondering where it all went wrong.
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(4) By the program crashing. This often destroys much of the evidence as 
well so can be very tedious.

Type 1 should really be extended to mean "before the program is executed". 
Thus it  includes program walkthroughs and similar review techniques and it 
includes the use of analysis tools such as those provided for SPARK.

Clearly these four ways represent a progression of difficulty. Errors are easier 
to locate and correct if they are detected early. Good programming tools are 
those which move bugs from one category to a lower numbered category. Thus 
good programming languages are those which provide facilities enabling one to 
protect oneself against  errors that are hard to find. Ada is a particularly good 
programming language because of its strong typing and runtime checks. For 
example, the correct  use of enumeration types makes hard bugs of type 3 into 
easy bugs of type 1 as we saw in the chapter on Safe Typing.

A major goal of SPARK is to strengthen interface definitions (the contracts) 
and so to move all errors to a low category and ideally to type 1 so that  they are 
all found before the program executes. Thus the global annotations do this 
because they prevent  us writing a program that accidentally changes the wrong 
global variables. Similarly, detecting the violation of pre- and postconditions 
results in a type 1 error. However, in order to check that  such violation cannot 
happen requires mathematical proof; this is not  always straightforward but the 
SPARK tools automate much of the proof process.

The kernel language

Ada is a very comprehensive language and the use of some features makes total 
program analysis difficult. Accordingly, the subset  of Ada supported by SPARK 
omits certain features. These mostly concern dynamic behavior. For example, 
there are no access types, no dynamic dispatching, generally no exceptions, all 
storage is static and hence all arrays must have static bounds (but  subprogram 
parameters can be dynamic) and there is no recursion.

Tasking of course is very dynamic and although SPARK does not support  full 
Ada tasking it  does support  the Ravenscar profile mentioned in the chapter on 
Safe Concurrency.

Another restriction that helps analysis is that every entity has to have a name. 
And each name should uniquely identify one entity. Hence all types and 
subtypes have to be named and overloading is generally prohibited. But the 
traditional block structure is supported so that local names are not restricted. 
Moreover, tagged types are permitted, although class wide types are not. 

The idea of state is crucial to analysis and there is a strong distinction 
between procedures whose purpose is to change state and functions whose 
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purpose is simply to observe state. This echoes the difference between 
statements and expressions mentioned in the chapter on Safe Syntax. Functions 
in SPARK are not permitted to have any side effects at all.

The resulting kernel has proved to be sufficiently expressive for the needs of 
critical applications which would not  want to use features such as dynamic 
storage.

Tool support

There are three main SPARK tools, the Examiner, the Simplifier and the Proof 
Checker. 

The Examiner is vital. It has two basic functions
• It checks conformance of the code to the rules of the kernel language. 
• It  checks consistency between the code and the embedded annotations 

by flow analysis. 
The Examiner performs these checks largely by analyzing the interfaces 
between components and ensuring that the details on either side do indeed 
conform to the specifications of the interfaces. The interfaces are of course the 
specifications of packages and subprograms and the annotations say more about 
these interfaces and thereby improve the quality of the contract  between the 
implementation of the component and its users.

Incidentally, the Examiner is itself written in SPARK and has been applied to 
itself. There is therefore considerable confidence in the correctness of the 
Examiner.

The core annotations ensure that a program cannot  have certain errors related 
to the flow of information. Thus the Examiner detects the use of uninitialized 
variables and the overwriting of values before they are used. This means that 
care should be taken not  to give junk initial values to variables "just in case" as 
mentioned in the chapter on Safe Startup because that  would hinder the 
detection of flow errors.

However, the core annotations do not address the issue of dynamic behavior. 
In order to do this a number of proof annotations can be inserted such as the pre- 
and postconditions we saw earlier which enable dynamic behavior to be 
analysed prior to execution. The general idea is that these annotations enable the 
Examiner to generate conjectures (potential theorems) which then have to be 
proved in order to verify that the program is correct  with respect  to the 
annotations. These proof annotations address
• pre- and postconditions of subprograms, 
• assertions such as loop invariants and type assertions, 
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• declarations of proof functions and proof types. 
The generated conjectures are known as verification conditions. These can then 
be verified by human reasoning, which is usually tedious and unreliable, or by 
using other tools such as the Simplifier and the Proof Checker.

Even without  proof annotations, the Examiner can generate conjectures 
corresponding to the runtime checks of Ada such as range checks. As we saw in 
the chapter on Safe Typing, these are checks automatically inserted to ensure 
that a variable is not assigned a value outside the range permitted by its 
declaration or that no attempt  is made to read or write outside the bounds of an 
array. The proof of these conjectures shows that the checks would not be 
violated and therefore that the program is free of runtime errors that would raise 
exceptions.

Note that  the use of proof is not necessary. SPARK and its tools can be used at 
various levels. For some applications it  might be appropriate just  to apply the 
core annotations because these alone enable flow analysis to be performed. But 
for other applications it  might be cost-effective to use the proof annotations as 
well. Indeed, different levels of analysis can be applied to different  parts of a 
complete program. 

There are a number of advantages in using a distinct tool such as the 
Examiner rather than simply a front-end processor which then passes its output 
to a compiler. One general advantage is that  it  encourages the early use of a V & 
V (Verification and Validation) approach. Thus it is possible to write pieces of 
SPARK complete with annotations and to have them processed by the Examiner 
even before they can be compiled. For example, a package specification can be 
examined even though its private part might not yet be written; such an 
incomplete package specification cannot of course be compiled.

There is a temptation to take an existing piece of Ada code and then to add 
the annotations (often referred to as "Sparking the Ada"). This is to be 
discouraged because it typically leads to extensive annotations indicative of an 
unnecessarily complex structure. Although in principle it  might  then be possible 
to rearrange the code to reduce the complexity, it is often the case that  such 
good intentions are overridden by the desire to preserve as much as possible of 
the existing code. 

The proper approach is to treat  the annotations as part of the design process 
and to use them to assist in arriving at a design which minimizes complexity 
before the effort of detailed coding takes one down an irreversible path. 
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Examples

As a simple example here is a version of the stack with full core annotations 
(but not proof annotations)

package Stacks is

   type Stack is private;

   function Is_Empty(S: Stack) return Boolean;
   function Is_Full(S: Stack) return Boolean;

   procedure Clear(S: out Stack);
   --# derives S from ;

   procedure Push(S: in out Stack; X: in Float);
   --# derives S from S, X;

   procedure Pop(S: in out Stack; X: out Float);
   --# derives S, X from S;

private  
   Max: constant := 100;
   type Top_Range is range 0 .. Max;
   subtype Index_Range is Top_Range range 1 .. Max;
   type Vector is array Index_Range of Float;
   type Stack is  
      record
         A: Vector;
         Top: Top_Range;
      end record;
end Stacks;

We have added functions Is Full  and Is Empty which just read the state of the 
stack. They have no annotations at all.

Derives annotations have been added to the various procedure specifications; 
these are not mandatory but  can improve flow analysis. Their purpose is to say 
which outputs depend upon which inputs – in this simple example they can in 
fact be deduced from the parameter modes. However, redundancy is one key to 
reliability and if they are inconsistent with the modes then that will be detected 
by the Examiner and perhaps thereby reveal an error in the specification.

The declarations in the private part have been changed to give names to all 
the subtypes involved.

At this level there are no changes to the package body at all – no annotations 
are required. This emphasizes that SPARK is largely about  improving the quality 
of the description of the interfaces.

Safe and Secure Software: An invitation to Ada 2005



111

A difference from the earlier examples is that  we have not given an initial 
value of 0 for Top but require that  Clear be called first. When the Examiner 
looks at  the client code it will perform flow analysis to ensure that Push and 
Pop are not called until Clear has been called; this analysis will be performed 
without  executing the program. If the Examiner cannot deduce this then it  will 
report that  the program has a potential flow error. On the other hand if it  can 
actually deduce that Push or Pop are called before Clear then it will report that 
the program is definitely in error.

In this brief overview it  is not  feasible to give serious examples of the proof 
process but the following trivial example will illustrate the ideas. Consider

procedure Exchange(X, Y: in out Float);
--# derives X from Y &
--#              Y from X;
--# post X = Y~ and Y = X~;

which shows the specification of a procedure whose purpose is to interchange 
the values of the two parameters. The body might be

procedure Exchange(X, Y: in out Float) is
   T: Float;
begin
   T := X;  X := Y;  Y := T;
end Exchange;

Analysis by the Examiner generates a verification condition which has to be 
shown to the true. In this particular example this is trivial and is done 
automatically by the Simplifier. In more elaborate situations the Simplifier will 
not be able to complete a proof in which case the Proof Checker is then used. 
This is an interactive program which, under human guidance, will hopefully be 
able to find a valid proof. 

Certification

As earlier chapters have shown, Ada is an excellent  language for writing reliable 
software. Ada allows programmers to catch errors early in the development 
process. Even more errors can be detected by using SPARK without having to 
rely on testing – a difficult and error-prone process in itself, yet an indispensable 
part of the software process. 

For the highest level of safety-critical and security-critical applications it  is 
not enough for a program to be correct. It  also has to be shown to be correct. 
This is usually called certification and is performed according to the methods of 
a relevant  certification agency. Examples of such agencies in the US are the 
FAA for safety-critical applications and the NSA for security-critical 
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applications. SPARK is of great value in developing programs to be certified as 
safe or secure as appropriate.

It  might  be thought that using SPARK adds to development costs. However, a 
recent  study concerning a security system for the NSA [5] showed that using 
SPARK proved cheaper than conventional development  methods. This again is 
perhaps surprising because SPARK clearly requires effort for the writing of 
annotations. But again that effort is well spent  and reduces time needed for 
correcting errors. In the particular application concerned it is claimed that  no 
errors were ever introduced anyway because of the careful way in which the 
program was constructed.
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